Foundations of Quantum Programming

Lecture 6: Model-Checking Quantum Systems

Mingsheng Ying

University of Technology Sydney, Australia

Outline

Quantum Graph Theory
Basic Definitions
Bottom Strongly Connected Components Decomposition of the State Hilbert Space

Reachability Analysis of Quantum Markov Chains

Outline

Quantum Graph Theory

Basic Definitions
Bottom Strongly Connected Components Decomposition of the State Hilbert Space

Reachability Analysis of Quantum Markov Chains

Quantum Markov Chains

- A quantum Markov chain is a pair $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$, where:

Quantum Markov Chains

- A quantum Markov chain is a pair $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$, where:

1. \mathcal{H} is a finite-dimensional Hilbert space;

Quantum Markov Chains

- A quantum Markov chain is a pair $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$, where:

1. \mathcal{H} is a finite-dimensional Hilbert space;
2. \mathcal{E} is a quantum operation (or super-operator) in \mathcal{H}.

Quantum Markov Chains

- A quantum Markov chain is a pair $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$, where:

1. \mathcal{H} is a finite-dimensional Hilbert space;
2. \mathcal{E} is a quantum operation (or super-operator) in \mathcal{H}.

- Behaviour of a quantum Markov chain: if currently the process is in a mixed state ρ, then it will be in state $\mathcal{E}(\rho)$ in the next step.

Quantum Markov Chains

- A quantum Markov chain is a pair $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$, where:

1. \mathcal{H} is a finite-dimensional Hilbert space;
2. \mathcal{E} is a quantum operation (or super-operator) in \mathcal{H}.

- Behaviour of a quantum Markov chain: if currently the process is in a mixed state ρ, then it will be in state $\mathcal{E}(\rho)$ in the next step.
- A quantum Markov chain $\langle\mathcal{H}, \mathcal{E}\rangle$ is a discrete-time quantum system of which the state space is \mathcal{H} and the dynamics is described by quantum operation \mathcal{E}.

Notations

- $\mathcal{D}(\mathcal{H})$ is the set of partial density operators in \mathcal{H}; that is, positive operators ρ with trace $\operatorname{tr}(\rho) \leq 1$.

Notations

- $\mathcal{D}(\mathcal{H})$ is the set of partial density operators in \mathcal{H}; that is, positive operators ρ with trace $\operatorname{tr}(\rho) \leq 1$.
- For any subset X of \mathcal{H}, span X is the subspace of \mathcal{H} spanned by X; that is, it consists of all finite linear combinations of vectors in X.

Notations

- $\mathcal{D}(\mathcal{H})$ is the set of partial density operators in \mathcal{H}; that is, positive operators ρ with trace $\operatorname{tr}(\rho) \leq 1$.
- For any subset X of \mathcal{H}, spanX is the subspace of \mathcal{H} spanned by X; that is, it consists of all finite linear combinations of vectors in X.
- The support $\operatorname{supp}(\rho)$ of $\rho \in \mathcal{D}(\mathcal{H})$ is the subspace of \mathcal{H} spanned by the eigenvectors of ρ with non-zero eigenvalues.

Notations

- $\mathcal{D}(\mathcal{H})$ is the set of partial density operators in \mathcal{H}; that is, positive operators ρ with trace $\operatorname{tr}(\rho) \leq 1$.
- For any subset X of \mathcal{H}, spanX is the subspace of \mathcal{H} spanned by X; that is, it consists of all finite linear combinations of vectors in X.
- The support $\operatorname{supp}(\rho)$ of $\rho \in \mathcal{D}(\mathcal{H})$ is the subspace of \mathcal{H} spanned by the eigenvectors of ρ with non-zero eigenvalues.
- Let $\left\{X_{k}\right\}$ be a family of subspaces of \mathcal{H}. Then the join of $\left\{X_{k}\right\}$ is

$$
\bigvee_{k} X_{k}=\operatorname{span}\left(\bigcup_{k} X_{k}\right) .
$$

Notations

- $\mathcal{D}(\mathcal{H})$ is the set of partial density operators in \mathcal{H}; that is, positive operators ρ with trace $\operatorname{tr}(\rho) \leq 1$.
- For any subset X of \mathcal{H}, spanX is the subspace of \mathcal{H} spanned by X; that is, it consists of all finite linear combinations of vectors in X.
- The support $\operatorname{supp}(\rho)$ of $\rho \in \mathcal{D}(\mathcal{H})$ is the subspace of \mathcal{H} spanned by the eigenvectors of ρ with non-zero eigenvalues.
- Let $\left\{X_{k}\right\}$ be a family of subspaces of \mathcal{H}. Then the join of $\left\{X_{k}\right\}$ is

$$
\bigvee_{k} X_{k}=\operatorname{span}\left(\bigcup_{k} X_{k}\right) .
$$

- The image of a subspace X of \mathcal{H} under a quantum operation \mathcal{E} is

$$
\mathcal{E}(X)=\bigvee_{|\psi\rangle \in X} \operatorname{supp}(\mathcal{E}(|\psi\rangle\langle\psi|))
$$

Proposition

1. If $\rho=\sum_{k} \lambda_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ where all $\lambda_{k}>0$ (but $\left|\psi_{k}\right\rangle$'s are not required to be pairwise orthogonal), then $\operatorname{supp}(\rho)=\operatorname{span}\left\{\left|\psi_{k}\right\rangle\right\}$;

Proposition

1. If $\rho=\sum_{k} \lambda_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ where all $\lambda_{k}>0$ (but $\left|\psi_{k}\right\rangle$'s are not required to be pairwise orthogonal), then $\operatorname{supp}(\rho)=\operatorname{span}\left\{\left|\psi_{k}\right\rangle\right\}$;
2. $\operatorname{supp}(\rho+\sigma)=\operatorname{supp}(\rho) \vee \operatorname{supp}(\sigma)$;

Proposition

1. If $\rho=\sum_{k} \lambda_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ where all $\lambda_{k}>0$ (but $\left|\psi_{k}\right\rangle$'s are not required to be pairwise orthogonal), then $\operatorname{supp}(\rho)=\operatorname{span}\left\{\left|\psi_{k}\right\rangle\right\}$;
2. $\operatorname{supp}(\rho+\sigma)=\operatorname{supp}(\rho) \vee \operatorname{supp}(\sigma)$;
3. If \mathcal{E} has the Kraus operator-sum representation $\mathcal{E}=\sum_{i \in I} E_{i} \circ E_{i}^{\dagger}$, then

$$
\mathcal{E}(X)=\operatorname{span}\left\{E_{i}|\psi\rangle: i \in I \text { and }|\psi\rangle \in X\right\} ;
$$

Proposition

1. If $\rho=\sum_{k} \lambda_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ where all $\lambda_{k}>0$ (but $\left|\psi_{k}\right\rangle$'s are not required to be pairwise orthogonal), then $\operatorname{supp}(\rho)=\operatorname{span}\left\{\left|\psi_{k}\right\rangle\right\}$;
2. $\operatorname{supp}(\rho+\sigma)=\operatorname{supp}(\rho) \vee \operatorname{supp}(\sigma)$;
3. If \mathcal{E} has the Kraus operator-sum representation $\mathcal{E}=\sum_{i \in I} E_{i} \circ E_{i}^{\dagger}$, then

$$
\mathcal{E}(X)=\operatorname{span}\left\{E_{i}|\psi\rangle: i \in I \text { and }|\psi\rangle \in X\right\} ;
$$

4. $\mathcal{E}\left(X_{1} \vee X_{2}\right)=\mathcal{E}\left(X_{1}\right) \vee \mathcal{E}\left(X_{2}\right)$. Thus, $X \subseteq Y \Rightarrow \mathcal{E}(X) \subseteq \mathcal{E}(Y)$;

Proposition

1. If $\rho=\sum_{k} \lambda_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|$ where all $\lambda_{k}>0$ (but $\left|\psi_{k}\right\rangle$'s are not required to be pairwise orthogonal), then $\operatorname{supp}(\rho)=\operatorname{span}\left\{\left|\psi_{k}\right\rangle\right\}$;
2. $\operatorname{supp}(\rho+\sigma)=\operatorname{supp}(\rho) \vee \operatorname{supp}(\sigma)$;
3. If \mathcal{E} has the Kraus operator-sum representation $\mathcal{E}=\sum_{i \in I} E_{i} \circ E_{i}^{\dagger}$, then

$$
\mathcal{E}(X)=\operatorname{span}\left\{E_{i}|\psi\rangle: i \in I \text { and }|\psi\rangle \in X\right\} ;
$$

4. $\mathcal{E}\left(X_{1} \vee X_{2}\right)=\mathcal{E}\left(X_{1}\right) \vee \mathcal{E}\left(X_{2}\right)$. Thus, $X \subseteq Y \Rightarrow \mathcal{E}(X) \subseteq \mathcal{E}(Y)$;
5. $\mathcal{E}(\operatorname{supp}(\rho))=\operatorname{supp}(\mathcal{E}(\rho))$.

Adjacency Relation

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain, $|\varphi\rangle,|\psi\rangle \in \mathcal{H}$ be pure states and $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ be mixed states in \mathcal{H}. Then

1. $|\varphi\rangle$ is adjacent to $|\psi\rangle$ in \mathcal{C}, written $|\psi\rangle \rightarrow|\varphi\rangle$, if $|\varphi\rangle \in \operatorname{supp}(\mathcal{E}(|\psi\rangle\langle\psi|))$.

Adjacency Relation

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain, $|\varphi\rangle,|\psi\rangle \in \mathcal{H}$ be pure states and $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ be mixed states in \mathcal{H}. Then

1. $|\varphi\rangle$ is adjacent to $|\psi\rangle$ in \mathcal{C}, written $|\psi\rangle \rightarrow|\varphi\rangle$, if $|\varphi\rangle \in \operatorname{supp}(\mathcal{E}(|\psi\rangle\langle\psi|))$.
2. $|\varphi\rangle$ is adjacent to ρ, written $\rho \rightarrow|\varphi\rangle$, if $|\varphi\rangle \in \mathcal{E}(\operatorname{supp}(\rho))$.

Adjacency Relation

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain, $|\varphi\rangle,|\psi\rangle \in \mathcal{H}$ be pure states and $\rho, \sigma \in \mathcal{D}(\mathcal{H})$ be mixed states in \mathcal{H}. Then

1. $|\varphi\rangle$ is adjacent to $|\psi\rangle$ in \mathcal{C}, written $|\psi\rangle \rightarrow|\varphi\rangle$, if $|\varphi\rangle \in \operatorname{supp}(\mathcal{E}(|\psi\rangle\langle\psi|))$.
2. $|\varphi\rangle$ is adjacent to ρ, written $\rho \rightarrow|\varphi\rangle$, if $|\varphi\rangle \in \mathcal{E}(\operatorname{supp}(\rho))$.
3. σ is adjacent to ρ, written $\rho \rightarrow \sigma$, if $\operatorname{supp}(\sigma) \subseteq \mathcal{E}(\operatorname{supp}(\rho))$.

Reachability

1. A path from ρ to σ in a quantum Markov chain \mathcal{C} is a sequence

$$
\pi=\rho_{0} \rightarrow \rho_{1} \rightarrow \cdots \rightarrow \rho_{n}(n \geq 0)
$$

of adjacent density operators in \mathcal{C} such that $\operatorname{supp}\left(\rho_{0}\right) \subseteq \operatorname{supp}(\rho)$ and $\rho_{n}=\sigma$.

Reachability

1. A path from ρ to σ in a quantum Markov chain \mathcal{C} is a sequence

$$
\pi=\rho_{0} \rightarrow \rho_{1} \rightarrow \cdots \rightarrow \rho_{n}(n \geq 0)
$$

of adjacent density operators in \mathcal{C} such that $\operatorname{supp}\left(\rho_{0}\right) \subseteq \operatorname{supp}(\rho)$ and $\rho_{n}=\sigma$.
2. For any density operators ρ and σ, if there is a path from ρ to σ then σ is reachable from ρ in \mathcal{C}.

Reachable Space

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. For any $\rho \in \mathcal{D}(\mathcal{H})$, its reachable space in \mathcal{C} is:

$$
\mathcal{R}_{\mathcal{C}}(\rho)=\operatorname{span}\{|\psi\rangle \in \mathcal{H}:|\psi\rangle \text { is reachable from } \rho \text { in } \mathcal{C}\} .
$$

Transitivity of Reachability

For any $\rho, \sigma \in \mathcal{D}(\mathcal{H})$, if $\operatorname{supp}(\rho) \subseteq \mathcal{R}_{\mathcal{C}}(\sigma)$, then $\mathcal{R}_{\mathcal{C}}(\rho) \subseteq \mathcal{R}_{\mathcal{C}}(\sigma)$.
Theorem
Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. If $d=\operatorname{dim} \mathcal{H}$, then for any $\rho \in \mathcal{D}(\mathcal{H})$, we have

$$
\mathcal{R}_{\mathcal{C}}(\rho)=\bigvee_{i=0}^{d-1} \operatorname{supp}\left(\mathcal{E}^{i}(\rho)\right)
$$

where \mathcal{E}^{i} is the i th power of \mathcal{E}; that is, $\mathcal{E}^{0}=\mathcal{I}$ and $\mathcal{E}^{i+1}=\mathcal{E} \circ \mathcal{E}^{i}$ for $i \geq 0$.

Strong Connectivity

- Let X be a subspace of \mathcal{H} and \mathcal{E} a quantum operation in \mathcal{H}. Then the restriction of \mathcal{E} on X is defined by

$$
\mathcal{E}_{X}(\rho)=P_{X} \mathcal{E}(\rho) P_{X}
$$

for all $\rho \in \mathcal{D}(X)$.

Strong Connectivity

- Let X be a subspace of \mathcal{H} and \mathcal{E} a quantum operation in \mathcal{H}. Then the restriction of \mathcal{E} on X is defined by

$$
\mathcal{E}_{X}(\rho)=P_{X} \mathcal{E}(\rho) P_{X}
$$

for all $\rho \in \mathcal{D}(X)$.

- Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. A subspace X of \mathcal{H} is strongly connected in \mathcal{C} if for any $|\varphi\rangle,|\psi\rangle \in X$:

$$
|\varphi\rangle \in \mathcal{R}_{\mathcal{C}_{X}}(\psi) \text { and }|\psi\rangle \in \mathcal{R}_{\mathcal{C}_{X}}(\varphi)
$$

where $\varphi=|\varphi\rangle\langle\varphi|$ and $\psi=|\psi\rangle\langle\psi|$, quantum Markov chain $\mathcal{C}_{X}=\left\langle X, \mathcal{E}_{X}\right\rangle$ is the restriction of \mathcal{C} on X.

Inductive Partial Order

- Let (L, \sqsubseteq) be a partial order. If any two elements $x, y \in L$ are comparable; that is, either $x \sqsubseteq y$ or $y \sqsubseteq x$, then L is linearly ordered by \sqsubseteq.

Inductive Partial Order

- Let (L, \sqsubseteq) be a partial order. If any two elements $x, y \in L$ are comparable; that is, either $x \sqsubseteq y$ or $y \sqsubseteq x$, then L is linearly ordered by \sqsubseteq.
- A partial order (L, \sqsubseteq) is inductive if for any subset K of L that is linearly ordered by \sqsubseteq, the least upper bound $\sqcup K$ exists in L.

Lemm

Write $S C(\mathcal{C})$ for the set of all strongly connected subspaces of \mathcal{H} in \mathcal{C}. Then partial order $(S C(\mathcal{C}), \subseteq)$ is inductive.

Zorn Lemma

Every inductive partial order has (at least one) maximal elements.

Zorn Lemma

Every inductive partial order has (at least one) maximal elements.
Strongly Connected Components
A maximal element of $(S C(\mathcal{C}), \subseteq)$ is a strongly connected component (SCC) of \mathcal{C}.

Zorn Lemma

Every inductive partial order has (at least one) maximal elements.
Strongly Connected Components
A maximal element of $(S C(\mathcal{C}), \subseteq)$ is a strongly connected component (SCC) of \mathcal{C}.

Invariants
A subspace X of \mathcal{H} is invariant under a quantum operation \mathcal{E} if $\mathcal{E}(X) \subseteq X$.

Zorn Lemma

Every inductive partial order has (at least one) maximal elements.

Strongly Connected Components

A maximal element of $(S C(\mathcal{C}), \subseteq)$ is a strongly connected component (SCC) of \mathcal{C}.

Invariants

A subspace X of \mathcal{H} is invariant under a quantum operation \mathcal{E} if $\mathcal{E}(X) \subseteq X$.

Theorem
Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. If subspace X of \mathcal{H} is invariant under \mathcal{E}, then:

$$
\operatorname{tr}\left(P_{X} \mathcal{E}(\rho)\right) \geq \operatorname{tr}\left(P_{X} \rho\right)
$$

for all $\rho \in \mathcal{D}(\mathcal{H})$.

Bottom Strongly Connected Components

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. Then a subspace X of \mathcal{H} is a bottom strongly connected component (BSCC) of \mathcal{C} if it is an SCC of \mathcal{C} and it is invariant under \mathcal{E}.

Bottom Strongly Connected Components

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. Then a subspace X of \mathcal{H} is a bottom strongly connected component (BSCC) of \mathcal{C} if it is an SCC of \mathcal{C} and it is invariant under \mathcal{E}.

Characterisations of BSCCs, I
A subspace X is a BSCC of quantum Markov chain \mathcal{C} if and only if $\mathcal{R}_{\mathcal{C}}(|\varphi\rangle\langle\varphi|)=X$ for any $|\varphi\rangle \in X$.

Characterisations of BSCCs, II

- A density operator ρ in \mathcal{H} is a fixed point state of quantum operation \mathcal{E} if $\mathcal{E}(\rho)=\rho$.

Characterisations of BSCCs, II

- A density operator ρ in \mathcal{H} is a fixed point state of quantum operation \mathcal{E} if $\mathcal{E}(\rho)=\rho$.
- A fixed point state ρ of quantum operation \mathcal{E} is minimal if for any fixed point state σ of $\mathcal{E}, \operatorname{supp}(\sigma) \subseteq \operatorname{supp}(\rho)$ implies $\sigma=\rho$.

Characterisations of BSCCs, II

- A density operator ρ in \mathcal{H} is a fixed point state of quantum operation \mathcal{E} if $\mathcal{E}(\rho)=\rho$.
- A fixed point state ρ of quantum operation \mathcal{E} is minimal if for any fixed point state σ of $\mathcal{E}, \operatorname{supp}(\sigma) \subseteq \operatorname{supp}(\rho)$ implies $\sigma=\rho$.
- If ρ is a fixed point state of \mathcal{E}, then $\operatorname{supp}(\rho)$ is invariant under \mathcal{E}. Conversely, if X is invariant under \mathcal{E}, then there exists a fixed point state ρ_{X} of \mathcal{E} such that $\operatorname{supp}\left(\rho_{X}\right) \subseteq X$.

Characterisations of BSCCs, II

- A density operator ρ in \mathcal{H} is a fixed point state of quantum operation \mathcal{E} if $\mathcal{E}(\rho)=\rho$.
- A fixed point state ρ of quantum operation \mathcal{E} is minimal if for any fixed point state σ of $\mathcal{E}, \operatorname{supp}(\sigma) \subseteq \operatorname{supp}(\rho)$ implies $\sigma=\rho$.
- If ρ is a fixed point state of \mathcal{E}, then $\operatorname{supp}(\rho)$ is invariant under \mathcal{E}. Conversely, if X is invariant under \mathcal{E}, then there exists a fixed point state ρ_{X} of \mathcal{E} such that $\operatorname{supp}\left(\rho_{X}\right) \subseteq X$.
- A subspace X is a BSCC of quantum Markov chain $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ if and only if there exists a minimal fixed point state ρ of \mathcal{E} such that $\operatorname{supp}(\rho)=X$.

Lemma

1. For any two different BSCCs X and Y of quantum Markov chain $\mathcal{C}: X \cap Y=\{0\}$ (0-dimensional Hilbert space).

Lemma

1. For any two different BSCCs X and Y of quantum Markov chain $\mathcal{C}: X \cap Y=\{0\}$ (0-dimensional Hilbert space).
2. If X and Y are two BSCCs of \mathcal{C} with $\operatorname{dim} X \neq \operatorname{dim} Y$, then they are orthogonal: $X \perp Y$.

Transient Subspaces

A subspace $X \subseteq \mathcal{H}$ is transient in a quantum Markov chain $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ if

$$
\lim _{k \rightarrow \infty} \operatorname{tr}\left(P_{X} \mathcal{E}^{k}(\rho)\right)=0
$$

for any $\rho \in \mathcal{D}(\mathcal{H})$.

Transient Subspaces

A subspace $X \subseteq \mathcal{H}$ is transient in a quantum Markov chain $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ if

$$
\lim _{k \rightarrow \infty} \operatorname{tr}\left(P_{X} \mathcal{E}^{k}(\rho)\right)=0
$$

for any $\rho \in \mathcal{D}(\mathcal{H})$.
Asymptotic Average
Let \mathcal{E} be a quantum operation in \mathcal{H}. Then its asymptotic average is

$$
\mathcal{E}_{\infty}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}^{n}
$$

Lemma

1. For any density operator $\rho, \mathcal{E}_{\infty}(\rho)$ is a fixed point state of \mathcal{E};

Lemma

1. For any density operator $\rho, \mathcal{E}_{\infty}(\rho)$ is a fixed point state of \mathcal{E};
2. For any fixed point state $\sigma: \operatorname{supp}(\sigma) \subseteq \mathcal{E}_{\infty}(\mathcal{H})$.

Theorem - Largest Transient Subspace
Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. Then

$$
T_{\mathcal{E}}=\mathcal{E}_{\infty}(\mathcal{H})^{\perp}
$$

is the largest transient subspace in \mathcal{C}, where ${ }^{\perp}$ stands for orthocomplement.

Lemma

Let ρ and σ be two fixed point state of $\mathcal{E}, \operatorname{supp}(\sigma) \subsetneq \operatorname{supp}(\rho)$. Then there exists another fixed point state η such that

1. $\operatorname{supp}(\eta) \perp \operatorname{supp}(\sigma) ;$ and

Lemma

Let ρ and σ be two fixed point state of $\mathcal{E}, \operatorname{supp}(\sigma) \subsetneq \operatorname{supp}(\rho)$. Then there exists another fixed point state η such that

1. $\operatorname{supp}(\eta) \perp \operatorname{supp}(\sigma) ;$ and
2. $\operatorname{supp}(\rho)=\operatorname{supp}(\eta) \oplus \operatorname{supp}(\sigma)$.

Theorem - BSCC Decomposition

Lemma

Let ρ and σ be two fixed point state of $\mathcal{E}, \operatorname{supp}(\sigma) \subsetneq \operatorname{supp}(\rho)$. Then there exists another fixed point state η such that

1. $\operatorname{supp}(\eta) \perp \operatorname{supp}(\sigma) ;$ and
2. $\operatorname{supp}(\rho)=\operatorname{supp}(\eta) \oplus \operatorname{supp}(\sigma)$.

Theorem - BSCC Decomposition

- Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. Then $\mathcal{E}_{\infty}(\mathcal{H})$ can be decomposed into the direct sum of orthogonal BSCCs of \mathcal{C}.

Lemma

Let ρ and σ be two fixed point state of $\mathcal{E}, \operatorname{supp}(\sigma) \subsetneq \operatorname{supp}(\rho)$. Then there exists another fixed point state η such that

1. $\operatorname{supp}(\eta) \perp \operatorname{supp}(\sigma) ;$ and
2. $\operatorname{supp}(\rho)=\operatorname{supp}(\eta) \oplus \operatorname{supp}(\sigma)$.

Theorem - BSCC Decomposition

- Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain. Then $\mathcal{E}_{\infty}(\mathcal{H})$ can be decomposed into the direct sum of orthogonal BSCCs of \mathcal{C}.
- The Hilbert space of a quantum Markov chain $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ can be decomposed into:

$$
\mathcal{H}=B_{1} \oplus \cdots \oplus B_{u} \oplus T_{\mathcal{E}}
$$

where B_{i} 's are orthogonal BSCCs of $\mathcal{C}, T_{\mathcal{E}}$ is the largest transient subspace.

Theorem - (Weak) Uniqueness of BSCC Decomposition

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain,

$$
\mathcal{H}=B_{1} \oplus \cdots \oplus B_{u} \oplus T_{\mathcal{E}}=D_{1} \oplus \cdots \oplus D_{v} \oplus T_{\mathcal{E}}
$$

be two BSCC decompositions, $B_{i} \mathrm{~s}$ and $D_{i} \mathrm{~s}$ are arranged, respectively, according to the increasing order of the dimensions. Then

1. $u=v$; and

Theorem - (Weak) Uniqueness of BSCC Decomposition

Let $\mathcal{C}=\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain,

$$
\mathcal{H}=B_{1} \oplus \cdots \oplus B_{u} \oplus T_{\mathcal{E}}=D_{1} \oplus \cdots \oplus D_{v} \oplus T_{\mathcal{E}}
$$

be two BSCC decompositions, $B_{i} \mathrm{~s}$ and $D_{i} \mathrm{~s}$ are arranged, respectively, according to the increasing order of the dimensions. Then

1. $u=v$; and
2. $\operatorname{dim} B_{i}=\operatorname{dim} D_{i}$ for each $1 \leq i \leq u$.

Theorem - Decomposition Algorithm

Given a quantum Markov chain $\langle\mathcal{H}, \mathcal{E}\rangle$, Algorithm QDECOM decomposes the Hilbert space \mathcal{H} into the direct sum of a family of orthogonal BSCCs and a transient subspace of \mathcal{C} in time $O\left(d^{8}\right)$, where $d=\operatorname{dim} \mathcal{H}$.

Outline

> Quantum Graph Theory
> Basic Definitions
> Bottom Strongly Connected Components Decomposition of the State Hilbert Space

Reachability Analysis of Quantum Markov Chains

Reachability Probability

Let $\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain, $\rho \in \mathcal{D}(\mathcal{H})$ an initial state, and $X \subseteq \mathcal{H}$ a subspace. Then the probability of reaching X, starting from ρ, is

$$
\operatorname{Pr}(\rho \vDash \diamond X)=\lim _{i \rightarrow \infty} \operatorname{tr}\left(P_{X} \widetilde{\mathcal{E}}^{i}(\rho)\right)
$$

where $\widetilde{\mathcal{E}}^{i}$ is the composition of i copies of $\widetilde{\mathcal{E}}$, and $\widetilde{\mathcal{E}}$ is the quantum operation defined by

$$
\widetilde{\mathcal{E}}(\sigma)=P_{X} \sigma P_{X}+\mathcal{E}\left(P_{X^{\perp}} \sigma P_{X^{\perp}}\right)
$$

for all density operator σ.

Lemma

Let $\left\{B_{i}\right\}$ be a BSCC decomposition of $\mathcal{E}_{\infty}(\mathcal{H}), P_{B_{i}}$ the projection onto B_{i}. Then for each i, we have

$$
\lim _{k \rightarrow \infty} \operatorname{tr}\left(P_{B_{i}} \mathcal{E}^{k}(\rho)\right)=\operatorname{tr}\left(P_{B_{i}} \mathcal{E}_{\infty}(\rho)\right)
$$

for all $\rho \in \mathcal{D}(\mathcal{H})$.

Lemma

Let $\left\{B_{i}\right\}$ be a BSCC decomposition of $\mathcal{E}_{\infty}(\mathcal{H}), P_{B_{i}}$ the projection onto B_{i}. Then for each i, we have

$$
\lim _{k \rightarrow \infty} \operatorname{tr}\left(P_{B_{i}} \mathcal{E}^{k}(\rho)\right)=\operatorname{tr}\left(P_{B_{i}} \mathcal{E}_{\infty}(\rho)\right)
$$

for all $\rho \in \mathcal{D}(\mathcal{H})$.

Theorem - Computing Reachability Probability

Let $\langle\mathcal{H}, \mathcal{E}\rangle$ be a quantum Markov chain, $\rho \in \mathcal{D}(\mathcal{H}), X \subseteq \mathcal{H}$ a subspace. Then

$$
\operatorname{Pr}(\rho \vDash \diamond X)=\operatorname{tr}\left(P_{X} \widetilde{\mathcal{E}}_{\infty}(\rho)\right)
$$

and this probability can be computed in time $O\left(d^{8}\right)$ where $d=\operatorname{dim}(\mathcal{H})$.

