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Quantum Markov Chains
I A quantum Markov chain is a pair C = 〈H, E〉, where:

1. H is a finite-dimensional Hilbert space;
2. E is a quantum operation (or super-operator) inH.

I Behaviour of a quantum Markov chain: if currently the process is
in a mixed state ρ, then it will be in state E(ρ) in the next step.

I A quantum Markov chain 〈H, E〉 is a discrete-time quantum
system of which the state space isH and the dynamics is
described by quantum operation E .



Quantum Markov Chains
I A quantum Markov chain is a pair C = 〈H, E〉, where:

1. H is a finite-dimensional Hilbert space;

2. E is a quantum operation (or super-operator) inH.
I Behaviour of a quantum Markov chain: if currently the process is

in a mixed state ρ, then it will be in state E(ρ) in the next step.
I A quantum Markov chain 〈H, E〉 is a discrete-time quantum

system of which the state space isH and the dynamics is
described by quantum operation E .



Quantum Markov Chains
I A quantum Markov chain is a pair C = 〈H, E〉, where:

1. H is a finite-dimensional Hilbert space;
2. E is a quantum operation (or super-operator) inH.

I Behaviour of a quantum Markov chain: if currently the process is
in a mixed state ρ, then it will be in state E(ρ) in the next step.

I A quantum Markov chain 〈H, E〉 is a discrete-time quantum
system of which the state space isH and the dynamics is
described by quantum operation E .



Quantum Markov Chains
I A quantum Markov chain is a pair C = 〈H, E〉, where:

1. H is a finite-dimensional Hilbert space;
2. E is a quantum operation (or super-operator) inH.

I Behaviour of a quantum Markov chain: if currently the process is
in a mixed state ρ, then it will be in state E(ρ) in the next step.

I A quantum Markov chain 〈H, E〉 is a discrete-time quantum
system of which the state space isH and the dynamics is
described by quantum operation E .



Quantum Markov Chains
I A quantum Markov chain is a pair C = 〈H, E〉, where:

1. H is a finite-dimensional Hilbert space;
2. E is a quantum operation (or super-operator) inH.

I Behaviour of a quantum Markov chain: if currently the process is
in a mixed state ρ, then it will be in state E(ρ) in the next step.

I A quantum Markov chain 〈H, E〉 is a discrete-time quantum
system of which the state space isH and the dynamics is
described by quantum operation E .



Notations
I D(H) is the set of partial density operators inH; that is, positive

operators ρ with trace tr(ρ) ≤ 1.

I For any subset X ofH, spanX is the subspace ofH spanned by X;
that is, it consists of all finite linear combinations of vectors in X.

I The support supp(ρ) of ρ ∈ D(H) is the subspace ofH spanned
by the eigenvectors of ρ with non-zero eigenvalues.

I Let {Xk} be a family of subspaces ofH. Then the join of {Xk} is

∨
k

Xk = span

(⋃
k

Xk

)
.

I The image of a subspace X ofH under a quantum operation E is

E(X) =
∨
|ψ〉∈X

supp(E(|ψ〉〈ψ|)).
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Proposition

1. If ρ = ∑k λk|ψk〉〈ψk| where all λk > 0 (but |ψk〉’s are not required
to be pairwise orthogonal), then supp(ρ) = span{|ψk〉};

2. supp(ρ + σ) = supp(ρ) ∨ supp(σ);
3. If E has the Kraus operator-sum representation E = ∑i∈I Ei ◦ E†

i ,
then

E(X) = span{Ei|ψ〉 : i ∈ I and |ψ〉 ∈ X};

4. E(X1 ∨X2) = E(X1) ∨ E(X2). Thus, X ⊆ Y⇒ E(X) ⊆ E(Y);
5. E(supp(ρ)) = supp(E(ρ)).
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Adjacency Relation
Let C = 〈H, E〉 be a quantum Markov chain, |ϕ〉, |ψ〉 ∈ H be pure
states and ρ, σ ∈ D(H) be mixed states inH. Then

1. |ϕ〉 is adjacent to |ψ〉 in C, written |ψ〉 → |ϕ〉, if
|ϕ〉 ∈ supp(E(|ψ〉〈ψ|)).

2. |ϕ〉 is adjacent to ρ, written ρ→ |ϕ〉, if |ϕ〉 ∈ E(supp(ρ)).
3. σ is adjacent to ρ, written ρ→ σ, if supp(σ) ⊆ E(supp(ρ)).
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Reachability

1. A path from ρ to σ in a quantum Markov chain C is a sequence

π = ρ0 → ρ1 → · · · → ρn (n ≥ 0)

of adjacent density operators in C such that supp(ρ0) ⊆ supp(ρ)
and ρn = σ.

2. For any density operators ρ and σ, if there is a path from ρ to σ
then σ is reachable from ρ in C.

Reachable Space
Let C = 〈H, E〉 be a quantum Markov chain. For any ρ ∈ D(H), its
reachable space in C is:

RC(ρ) = span{|ψ〉 ∈ H : |ψ〉 is reachable from ρ in C}.
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Transitivity of Reachability
For any ρ, σ ∈ D(H), if supp(ρ) ⊆ RC(σ), thenRC(ρ) ⊆ RC(σ).

Theorem
Let C = 〈H, E〉 be a quantum Markov chain. If d = dimH, then for
any ρ ∈ D(H), we have

RC(ρ) =
d−1∨
i=0

supp
(
E i(ρ)

)
where E i is the ith power of E ; that is, E0 = I and E i+1 = E ◦ E i for
i ≥ 0.



Strong Connectivity

I Let X be a subspace ofH and E a quantum operation inH. Then
the restriction of E on X is defined by

EX(ρ) = PXE(ρ)PX

for all ρ ∈ D(X).

I Let C = 〈H, E〉 be a quantum Markov chain. A subspace X ofH
is strongly connected in C if for any |ϕ〉, |ψ〉 ∈ X:

|ϕ〉 ∈ RCX(ψ) and |ψ〉 ∈ RCX(ϕ)

where ϕ = |ϕ〉〈ϕ| and ψ = |ψ〉〈ψ|, quantum Markov chain
CX = 〈X, EX〉 is the restriction of C on X.
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Inductive Partial Order
I Let (L,v) be a partial order. If any two elements x, y ∈ L are

comparable; that is, either x v y or y v x, then L is linearly
ordered by v.

I A partial order (L,v) is inductive if for any subset K of L that is
linearly ordered by v, the least upper bound

⊔
K exists in L.

Lemm
Write SC(C) for the set of all strongly connected subspaces ofH in C.
Then partial order (SC(C),⊆) is inductive.
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Zorn Lemma
Every inductive partial order has (at least one) maximal elements.

Strongly Connected Components
A maximal element of (SC(C),⊆) is a strongly connected component
(SCC) of C.

Invariants
A subspace X ofH is invariant under a quantum operation E if
E(X) ⊆ X.

Theorem
Let C = 〈H, E〉 be a quantum Markov chain. If subspace X ofH is
invariant under E , then:

tr(PXE(ρ)) ≥ tr(PXρ)

for all ρ ∈ D(H).
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Bottom Strongly Connected Components
Let C = 〈H, E〉 be a quantum Markov chain. Then a subspace X ofH
is a bottom strongly connected component (BSCC) of C if it is an SCC
of C and it is invariant under E .

Characterisations of BSCCs, I
A subspace X is a BSCC of quantum Markov chain C if and only if
RC(|ϕ〉〈ϕ|) = X for any |ϕ〉 ∈ X.
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Characterisations of BSCCs, II
I A density operator ρ inH is a fixed point state of quantum

operation E if E(ρ) = ρ.

I A fixed point state ρ of quantum operation E is minimal if for
any fixed point state σ of E , supp(σ) ⊆ supp(ρ) implies σ = ρ.

I If ρ is a fixed point state of E , then supp(ρ) is invariant under E .
Conversely, if X is invariant under E , then there exists a fixed
point state ρX of E such that supp(ρX) ⊆ X.

I A subspace X is a BSCC of quantum Markov chain C = 〈H, E〉 if
and only if there exists a minimal fixed point state ρ of E such
that supp(ρ) = X.
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Lemma
1. For any two different BSCCs X and Y of quantum Markov chain
C: X ∩ Y = {0} (0-dimensional Hilbert space).

2. If X and Y are two BSCCs of C with dim X , dim Y, then they are
orthogonal: X⊥Y.
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Transient Subspaces
A subspace X ⊆ H is transient in a quantum Markov chain
C = 〈H, E〉 if

lim
k→∞

tr
(

PXE k(ρ)
)
= 0

for any ρ ∈ D(H).

Asymptotic Average
Let E be a quantum operation inH. Then its asymptotic average is

E∞ = lim
N→∞

1
N

N

∑
n=1
En.
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Lemma
1. For any density operator ρ, E∞(ρ) is a fixed point state of E ;

2. For any fixed point state σ: supp(σ) ⊆ E∞(H).

Theorem - Largest Transient Subspace
Let C = 〈H, E〉 be a quantum Markov chain. Then

TE = E∞(H)⊥

is the largest transient subspace in C, where ⊥ stands for
orthocomplement.
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Let ρ and σ be two fixed point state of E , supp(σ) ( supp(ρ). Then
there exists another fixed point state η such that
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decomposed into the direct sum of orthogonal BSCCs of C.

I The Hilbert space of a quantum Markov chain C = 〈H, E〉 can be
decomposed into:

H = B1 ⊕ · · · ⊕ Bu ⊕ TE

where Bi’s are orthogonal BSCCs of C, TE is the largest transient
subspace.
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Theorem - (Weak) Uniqueness of BSCC Decomposition
Let C = 〈H, E〉 be a quantum Markov chain,

H = B1 ⊕ · · · ⊕ Bu ⊕ TE = D1 ⊕ · · · ⊕Dv ⊕ TE

be two BSCC decompositions, Bis and Dis are arranged, respectively,
according to the increasing order of the dimensions. Then

1. u = v; and

2. dim Bi = dim Di for each 1 ≤ i ≤ u.

Theorem - Decomposition Algorithm
Given a quantum Markov chain 〈H, E〉, Algorithm QDECOM
decomposes the Hilbert spaceH into the direct sum of a family of
orthogonal BSCCs and a transient subspace of C in time O(d8), where
d = dimH.
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Reachability Probability
Let 〈H, E〉 be a quantum Markov chain, ρ ∈ D(H) an initial state,
and X ⊆ H a subspace. Then the probability of reaching X, starting
from ρ, is

Pr(ρ � ^X) = lim
i→∞

tr
(

PXẼ i(ρ)
)

where Ẽ i is the composition of i copies of Ẽ , and Ẽ is the quantum
operation defined by

Ẽ(σ) = PXσPX + E (PX⊥σPX⊥)

for all density operator σ.



Lemma
Let {Bi} be a BSCC decomposition of E∞(H), PBi the projection onto
Bi. Then for each i, we have

lim
k→∞

tr
(

PBiE
k(ρ)

)
= tr

(
PBiE∞(ρ)

)
for all ρ ∈ D(H).

Theorem - Computing Reachability Probability
Let 〈H, E〉 be a quantum Markov chain, ρ ∈ D(H), X ⊆ H a
subspace. Then

Pr(ρ � ^X) = tr
(

PXẼ∞(ρ)
)

,

and this probability can be computed in time O(d8) where
d = dim(H).
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